Tannakian Approach to Linear Differential Algebraic Groups

نویسنده

  • ALEXEY OVCHINNIKOV
چکیده

Tannaka’s theorem states that a linear algebraic group G is determined by the category of finite-dimensional G-modules and the forgetful functor. We extend this result to linear differential algebraic groups by introducing a category corresponding to their representations and show how this category determines such a group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tannakian Categories, Linear Differential Algebraic Groups, and Parametrized Linear Differential Equations

Tannaka’s theorem (cf. [19]) states that a linear algebraic group is determined by its category of representations. The problem of recognizing when a category is the category of representations of a linear algebraic group (or, more generally, an affine group scheme) is attacked via the theory of neutral Tannakian categories (see [18], [9]). This theory allows one to detect the underlying presen...

متن کامل

Tannakian Categories, Linear Differential Algebraic Groups, and Parameterized Linear Differential Equations

We provide conditions for a category with a fiber functor to be equivalent to the category of representations of a linear differential algebraic group. This generalizes the notion of a neutral Tannakian category used to characterize the category of representations of a linear algebraic group [18, 9].

متن کامل

Tannakian Categories with Semigroup Actions

Ostrowski’s theorem implies that log(x), log(x + 1), . . . are algebraically independent over C(x). More generally, for a linear differential or difference equation, it is an important problem to find all algebraic dependencies among a non-zero solution y and particular transformations of y, such as derivatives of y with respect to parameters, shifts of the arguments, rescaling, etc. In the pre...

متن کامل

Differential Tannakian categories

We define a differential Tannakian category and show that under a natural assumption it has a fibre functor. If in addition this category is neutral, that is, the target category for the fibre functor are finite dimensional vector spaces over the base field, then it is equivalent to the category of representations of a (pro-)linear differential algebraic group. Our treatment of the problem is v...

متن کامل

Scalar Extension of Abelian and Tannakian Categories

We introduce and develop the notion of scalar extension for abelian categories. Given a field extension F /F , to every F -linear abelian category A satisfying a suitable finiteness condition we associate an F -linear abelian category A ⊗F F ′ and an exact F -linear functor t : A → A ⊗F F . This functor is universal among F -linear right exact functors with target an F -linear abelian category....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007